Files
poky/meta/classes/kernel-yocto.bbclass
Bruce Ashfield 14df6d53b6 linux-yocto: improve checkout error handling and reporting
The typical workflow for linux-yocto simply uses a remote
upstream repository (Whether it is mirrored or not), and in this
case there are no issues with consistency in the format of the
resository that is unpacked into the WORKDIR.

When working with a local linux-yocto repository for kernel
development the remote vs local branches is not always consistent
between repositories.

The suggested/documented workflow has always been to use a
bare clone of linux-yocto, and use a second working tree repository
for development. Changes flow from the working tree to the bare
clone and then into the working directory for build. A common
mistake that happens with this workflow is that the non-bare,
working repository is used instead of the bare clone version.

If a non-bare repository is reference by the SRC_URI, then the
branches that are fetched into WORKDIR are not consitent. If the
MACHINE and META branches are not present, cryptic build errors
will result.

To solve this problem, the checkout code has been changed in
several ways:

  - works with a newly proposed 'bareclone' option to bitbake
  - detects if a bareclone is present in WORKDIR or not and
    adjustst the checkout accordingly.
  - if a non-bare clone is detected, machine and meta branches
    are checked. If they are not present, or can't be created
    a clear error message is produced
  - instead of manipulating the refs directly in the git tree,
    local tracking branches are (quietly) created for remote
    branches. Enabling a better workflow in the WORKDIR kernel
    repository.

This has been tested with linux-yocto remote upstreams, local
bare and non-bare respositories. All builds succeed or fail
with clear error messages.

(From OE-Core rev: e3b6537cc7931636ab11ae6ed2c8fbaad9da91bc)

Signed-off-by: Bruce Ashfield <bruce.ashfield@windriver.com>
Signed-off-by: Richard Purdie <richard.purdie@linuxfoundation.org>
2012-02-24 17:12:05 +00:00

318 lines
9.6 KiB
Plaintext

S = "${WORKDIR}/linux"
def find_patches(d):
patches=src_patches(d)
patch_list=[]
for p in patches:
_, _, local, _, _, _ = bb.decodeurl(p)
patch_list.append(local)
return patch_list
def find_sccs(d):
sources=src_patches(d, True)
sources_list=[]
for s in sources:
base, ext = os.path.splitext(os.path.basename(s))
if ext and ext in ('.scc'):
sources_list.append(s)
return sources_list
do_patch() {
cd ${S}
if [ -f ${WORKDIR}/defconfig ]; then
defconfig=${WORKDIR}/defconfig
fi
# if kernel tools are available in-tree, they are preferred
# and are placed on the path before any external tools. Unless
# the external tools flag is set, in that case we do nothing.
if [ -f "${S}/scripts/util/configme" ]; then
if [ -z "${EXTERNAL_KERNEL_TOOLS}" ]; then
PATH=${S}/scripts/util:${PATH}
fi
fi
kbranch=${KBRANCH}
if [ -n "${YOCTO_KERNEL_EXTERNAL_BRANCH}" ]; then
# switch from a generic to a specific branch
kbranch=${YOCTO_KERNEL_EXTERNAL_BRANCH}
fi
# simply ensures that a branch of the right name has been created
if [ -n "${YOCTO_KERNEL_META_DATA}" ]; then
createme_flags="--disable-meta-gen"
fi
createme ${createme_flags} ${ARCH} ${kbranch} ${defconfig}
if [ $? -ne 0 ]; then
echo "ERROR. Could not create ${kbranch}"
exit 1
fi
patches="${@" ".join(find_patches(d))}"
sccs="${@" ".join(find_sccs(d))}"
# This loops through all patches, and looks for directories that do
# not already have feature descriptions. If a directory doesn't have
# a feature description, we switch to the ${WORKDIR} variant of the
# feature (so we can write to it) and generate a feature for those
# patches. The generated feature will respect the patch order.
#
# By leaving source patch directories that already have .scc files
# as-is it means that a SRC_URI can only contain a .scc file, and all
# patches that the .scc references will be picked up, without having
# to be repeated on the SRC_URI line .. which is more intutive
set +e
patch_dirs=
for p in ${patches}; do
pdir=`dirname ${p}`
pname=`basename ${p}`
scc=`find ${pdir} -maxdepth 1 -name '*.scc'`
if [ -z "${scc}" ]; then
# there is no scc file. We need to switch to someplace that we know
# we can create content (the workdir)
workdir_subdir=`echo ${pdir} | sed "s%^.*/${PN}%%" | sed 's%^/%%'`
suggested_dir="${WORKDIR}/${workdir_subdir}"
echo ${gen_feature_dirs} | grep -q ${suggested_dir}
if [ $? -ne 0 ]; then
gen_feature_dirs="${gen_feature_dirs} ${suggested_dir}"
fi
# we call the file *.scc_tmp, so the test above will continue to find
# that patches from a common subdirectory don't have a scc file and
# they'll be placed in order, into this file. We'll rename it later.
echo "patch ${pname}" >> ${suggested_dir}/gen_${workdir_subdir}_desc.scc_tmp
else
suggested_dir="${pdir}"
fi
echo ${patch_dirs} | grep -q ${suggested_dir}
if [ $? -ne 0 ]; then
patch_dirs="${patch_dirs} ${suggested_dir}"
fi
done
# look for any found scc files, and ensure they are added to the list
# of directories passsed to updateme
for s in ${sccs}; do
sdir=`dirname ${s}`
echo ${patch_dirs} | grep -q ${sdir}
if [ $? -ne 0 ]; then
patch_dirs="${patch_dirs} ${sdir}"
fi
done
# go through the patch directories and look for any scc feature files
# that were constructed above. If one is found, rename it to ".scc" so
# the kernel patching can see it.
for pdir in ${patch_dirs}; do
scc=`find ${pdir} -maxdepth 1 -name '*.scc_tmp'`
if [ -n "${scc}" ]; then
new_scc=`echo ${scc} | sed 's/_tmp//'`
mv -f ${scc} ${new_scc}
fi
done
patch_dirs="${patch_dirs} ${WORKDIR}"
# add any explicitly referenced features onto the end of the feature
# list that is passed to the kernel build scripts.
if [ -n "${KERNEL_FEATURES}" ]; then
for feat in ${KERNEL_FEATURES}; do
addon_features="$addon_features --feature $feat"
done
fi
# updates or generates the target description
updateme --branch ${kbranch} -DKDESC=${KMACHINE}:${LINUX_KERNEL_TYPE} \
${addon_features} ${ARCH} ${KMACHINE} ${patch_dirs}
if [ $? -ne 0 ]; then
echo "ERROR. Could not update ${kbranch}"
exit 1
fi
# executes and modifies the source tree as required
patchme ${kbranch}
if [ $? -ne 0 ]; then
echo "ERROR. Could not modify ${kbranch}"
exit 1
fi
}
do_kernel_checkout() {
# we build out of {S}, so ensure that ${S} is clean and present
rm -rf ${S}
mkdir -p ${S}/.git
set +e
# A linux yocto SRC_URI should use the bareclone option. That
# ensures that all the branches are available in the WORKDIR version
# of the repository. If it wasn't passed, we should detect it, and put
# out a useful error message
if [ -d "${WORKDIR}/git/.git" ]; then
echo "WARNING. ${WORKDIR}/git is not a bare clone."
echo "Ensure that the SRC_URI includes the 'bareclone=1' option."
# we can fix up the kernel repository, but at the least the meta
# branch must be present. The machine branch may be created later.
mv ${WORKDIR}/git/.git ${S}
rm -rf ${WORKDIR}/git/
cd ${S}
git branch -a | grep -q ${KMETA}
if [ $? -ne 0 ]; then
echo "ERROR. The branch '${KMETA}' is required and was not"
echo "found. Ensure that the SRC_URI points to a valid linux-yocto"
echo "kernel repository"
exit 1
fi
if [ -z "${YOCTO_KERNEL_EXTERNAL_BRANCH}" ]; then
git branch -a | grep -q ${KBRANCH}
if [ $? -ne 0 ]; then
echo "ERROR. The branch '${KBRANCH}' is required and was not"
echo "found. Ensure that the SRC_URI points to a valid linux-yocto"
echo "kernel repository"
exit 1
fi
fi
else
mv ${WORKDIR}/git/* ${S}/.git
rm -rf ${WORKDIR}/git/
cd ${S}
git config core.bare false
fi
# end debare
# convert any remote branches to local tracking ones
for i in `git branch -a | grep remotes | grep -v HEAD`; do
b=`echo $i | cut -d' ' -f2 | sed 's%remotes/origin/%%'`;
git show-ref --quiet --verify -- "refs/heads/$b"
if [ $? -ne 0 ]; then
git branch $b $i > /dev/null
fi
done
# Create a working tree copy of the kernel by checkout out a branch
git show-ref --quiet --verify -- "refs/heads/${KBRANCH}"
if [ $? -eq 0 ]; then
# checkout and clobber and unimportant files
git checkout -f ${KBRANCH}
else
echo "Not checking out ${KBRANCH}, it will be created later"
git checkout -f master
fi
}
do_kernel_checkout[dirs] = "${S}"
addtask kernel_checkout before do_patch after do_unpack
do_kernel_configme[dirs] = "${CCACHE_DIR} ${S} ${B}"
do_kernel_configme() {
echo "[INFO] doing kernel configme"
if [ -n ${KCONFIG_MODE} ]; then
configmeflags=${KCONFIG_MODE}
else
# If a defconfig was passed, use =n as the baseline, which is achieved
# via --allnoconfig
if [ -f ${WORKDIR}/defconfig ]; then
configmeflags="--allnoconfig"
fi
fi
cd ${S}
PATH=${PATH}:${S}/scripts/util
configme ${configmeflags} --reconfig --output ${B} ${KBRANCH} ${KMACHINE}
if [ $? -ne 0 ]; then
echo "ERROR. Could not configure ${KMACHINE}-${LINUX_KERNEL_TYPE}"
exit 1
fi
echo "# Global settings from linux recipe" >> ${B}/.config
echo "CONFIG_LOCALVERSION="\"${LINUX_VERSION_EXTENSION}\" >> ${B}/.config
}
python do_kernel_configcheck() {
import bb, re, string, sys, commands
bb.plain("NOTE: validating kernel configuration")
pathprefix = "export PATH=%s:%s; " % (d.getVar('PATH', True), "${S}/scripts/util/")
cmd = bb.data.expand("cd ${B}/..; kconf_check -config- ${B} ${S} ${B} ${KBRANCH}",d )
ret, result = commands.getstatusoutput("%s%s" % (pathprefix, cmd))
bb.plain( "%s" % result )
}
# Ensure that the branches (BSP and meta) are on the locatios specified by
# their SRCREV values. If they are NOT on the right commits, the branches
# are reset to the correct commit.
do_validate_branches() {
cd ${S}
# nothing to do if bootstrapping
if [ -n "${YOCTO_KERNEL_EXTERNAL_BRANCH}" ]; then
return
fi
# nothing to do if SRCREV is AUTOREV
if [ "${SRCREV_machine}" = "AUTOINC" ]; then
# restore the branch for builds
git checkout -f ${KBRANCH}
return
fi
branch_head=`git show-ref -s --heads ${KBRANCH}`
meta_head=`git show-ref -s --heads ${KMETA}`
target_branch_head="${SRCREV_machine}"
target_meta_head="${SRCREV_meta}"
current=`git branch |grep \*|sed 's/^\* //'`
if [ -n "$target_branch_head" ] && [ "$branch_head" != "$target_branch_head" ]; then
if [ -n "${KERNEL_REVISION_CHECKING}" ]; then
ref=`git show ${target_meta_head} 2>&1 | head -n1 || true`
if [ "$ref" = "fatal: bad object ${target_meta_head}" ]; then
echo "ERROR ${target_branch_head} is not a valid commit ID."
echo "The kernel source tree may be out of sync"
exit 1
else
echo "Forcing branch $current to ${target_branch_head}"
git branch -m $current $current-orig
git checkout -b $current ${target_branch_head}
fi
fi
fi
if [ "$meta_head" != "$target_meta_head" ]; then
if [ -n "${KERNEL_REVISION_CHECKING}" ]; then
ref=`git show ${target_meta_head} 2>&1 | head -n1 || true`
if [ "$ref" = "fatal: bad object ${target_meta_head}" ]; then
echo "ERROR ${target_meta_head} is not a valid commit ID"
echo "The kernel source tree may be out of sync"
exit 1
else
echo "Forcing branch meta to ${target_meta_head}"
git branch -m ${KMETA} ${KMETA}-orig
git checkout -b ${KMETA} ${target_meta_head}
fi
fi
fi
# restore the branch for builds
git checkout -f ${KBRANCH}
}
# Many scripts want to look in arch/$arch/boot for the bootable
# image. This poses a problem for vmlinux based booting. This
# task arranges to have vmlinux appear in the normalized directory
# location.
do_kernel_link_vmlinux() {
if [ ! -d "${B}/arch/${ARCH}/boot" ]; then
mkdir ${B}/arch/${ARCH}/boot
fi
cd ${B}/arch/${ARCH}/boot
ln -sf ../../../vmlinux
}